

Best Practice Guide

(SSL Implementation) for

Mobile App Development

流動應用程式流動應用程式流動應用程式流動應用程式 (SSL(SSL(SSL(SSL 實施實施實施實施))))

最佳行事指引最佳行事指引最佳行事指引最佳行事指引

Jointly published by

Hong Kong Computer Emergency Response Team Coordination Centre (HKCERT) [香港電腦保安事故協調中心]
https://www.hkcert.org

Professional Information Security Association (PISA) [專業資訊保安協會]
http://www.pisa.org.hk

Publication version 1.0 September, 2015

This document is under the Creative Commons 4.0 license

Page 2

Content

Abstract ... 3

Who should read ... 3

When to read .. 3

Relevance of the Personal Data (Privacy) Ordinance to the Security of SSL Implementation

in Mobile Application Development ... 4

Possible reasons of invalidation of SSL ... 5

Older Mobile Platform ... 5

Missing Certificate Authority (CA) Certificate ... 5

Self-signed Certificate .. 5

Expired Certificate ... 5

Man-in-the-Middle (MITM) .. 5

Secure SSL/TLS connection checklist .. 6

Best Practices .. 7

General Best Practices ... 7

iOS Specific Best Practices .. 8

Android Specific Best Practices .. 8

Recommendations on Practical Programming .. 8

Android Scenario 1: Mishandle SSL error in onReceivedSslError function ... 9

Android Scenario 2: Mishandle validation in a custom TrustManager ... 9

Android Scenario 3: Allow any hostname in the verification ... 11

iOS Scenario 1: Allow any HTTPS certificate ... 11

iOS Scenario 2: Mishandle validation in NSURLConnection and NSURLSession 12

Certificate Pinning ... 13

Conclusion ... 13

Page 3

Abstract

Mobile platform is increasingly become a choice for delivering services. As more sensitive data

and transaction data will be transported on mobile communication channels, the security risks

associated with untrusted communication, such as public Wi-Fi have to be addressed, for

example, fraudster can set up a fake Wi-Fi access point and fake Secure Sockets Layer (SSL)

certificates to conduct man-in-the-middle (MITM) attack1 to capture sensitive data.

Secure Sockets Layer / Transport Layer Security (SSL/TLS) has been widely used for

authentication and encryption. However, if it is implemented via mobile apps, users have not got

the same transparency of SSL as in the browser where visual alerts can be given (a colour

padlock icon indicator shown in the address bar). The quality of SSL/TLS implementation in

mobile app is thus crucial to detect and deny MITM attacks.

This document mentions common practices which help mobile application developers to handle

SSL connection with appropriate ways to provide secure channel between mobile app and

server and also prevent from MITM attack.

Who should read

This document targets specifically the following parties:

1. Mobile app owners who would implement a mobile app service which involves

transmission of sensitive data, such as personal data, credential, and payment

information.

2. App developers who provide codes for the mobile apps, especially on iOS and Android

platforms, which make HTTPS connection to the servers on SSL/TLS protocol.

When to read

This document should be read:

1. before mobile app owners and app developers start planning mobile app development

project;

2. during the review of the SSL/TLS implementation and verification of coding for the

mobile app developers.

1
 MITM attack, Wikipedia https://en.wikipedia.org/wiki/Man-in-the-middle_attack

Page 4

Relevance of the Personal Data (Privacy) Ordinance to the Security of SSL

Implementation in Mobile Application Development

Data Protection Principles - Security (“DPP4”)2 under the Personal Data (Privacy) Ordinance

requires a data user to take all reasonably practicable steps to implement security precautions,

the level of which should be commensurate with the seriousness of the potential harm that could

result from a data breach.

The “Personal data privacy protection: what mobile apps developers and their clients should

know”3 stated that data user should consider the use of technological safeguards, including

encrypting personal data being transmitted to prevent unauthorized interception or access.

For the effective protection of data via encryption technological, the data user and the mobile

app developer should answer to the following questions:

1. Is the transmission of sensitive data properly protected by encryption?

2. Is the strength of encryption technology proportional to the security risks associated?

For critical services such as financial application, cybercriminals have the incentive to

use more advanced attacks to circumvent normal SSL certificate validation. They might

trick the user to install a fake certificate on to a mobile device. In this case, mobile app

owner and developer should consider adopting more advanced technology such as

Certificate Pinning4 to combat against such attack.

3. Is the encryption properly implemented so that it cannot be easily circumvented?

In the mobile app development, SSL/TLS encryption protocol is commonly used to

encrypt sensitive data during transmission. There are many ways that a faulty

implementation can give opportunity for attackers. For example, if the mobile app does

not validate digital certificate for expiry date, the proper signing certificate authority, and

use of strong state-of-art strong encryption algorithm, attacker can use an expired

certificate, a fake certificate, or a known attack to force the use of a low end encryption

algorithm.

To ensure proper protection of sensitive data in transmission, mobile app owner should put

down the requirements on the selected implementation of encryption and validation of digital

2
 Data Protection Principles, Office of the Privacy Commissioner for Personal Data

https://www.pcpd.org.hk/english/data_privacy_law/ordinance_at_a_Glance/ordinance.html#4
3
 Personal data privacy protection: what mobile apps developers and their clients should know, Office of

the Privacy Commissioner for Personal Data
https://www.pcpd.org.hk/english/resources_centre/publications/files/apps_developers_e.pdf
4
 Certificate Pinning, Wikipedia https://en.wikipedia.org/wiki/HTTP_Public_Key_Pinning

Page 5

certificate, and verification of implementation into the tender or quotation specification of the

mobile app development project.

For broader consideration on personal data privacy during the design and development of

mobile apps, you may refer to the "Best Practice Guide for Mobile App Development"5 provided

by Office of the Privacy Commissioner for Personal Data.

Possible reasons of invalidation of SSL

Older Mobile Platform

For the Android 2.2 or below version, the SSL support contains some issues on Server Name

Indication (SNI)6 and Multiple Chain7. It causes SSL connection become invalid, due to the

rejection of missing intermediate certificate authority (CA) certificate in the older Android system.

Missing Certificate Authority (CA) Certificate

The SSL connections of some websites become invalid, because the signed CA certificate may

be missing in the default CA list of the mobile platform.

Self-signed Certificate

This situation always occurs during development. A self-signed certificate is commonly used in

the testing environment for testing purpose. Companies and developers are not willing to pay a

certificate for internal testing.

Expired Certificate

Expired certificate is usually a management issue. The administrator of the production website

has not tracked and updated the digital certificate from time to time. An expired certificate will be

treated as untrusted certificate.

Man-in-the-Middle (MITM)

When attacker conducts a MITM attack, the traffic will be intercepted or redirected. In this

situation, the attacker's self-signed certificate will replace the legitimate certificate. This makes

the SSL connection become invalid.

The following figure shows the situation of MITM attack. Attacker can setup a fake Wi-Fi access

point. When mobile user connects to the Internet via the access point, MITM intends to intercept

5
 Best Practice Guide for Mobile App Development, Office of Privacy Commissioner for Personal Data

https://www.pcpd.org.hk/english/resources_centre/publications/files/Mobileapp_guide_e.pdf
6
 Issues on SNI, Google https://code.google.com/p/android/issues/detail?id=12908

7
 Issues on Multiple Chain, Google https://code.google.com/p/android/issues/detail?id=26542

Page 6

the traffic. If the mobile client (mobile app) does not handle the validation of SSL certificate, an

invalid SSL connection will be made and the MITM can intercept the traffic successfully.

Fig 1. MITM attack

Secure SSL/TLS connection checklist

To figure out if your mobile app has made a secure connection, mobile app developers should

check the following items:

1. Does your mobile app connect to one or more servers in proper encryption?

2. Are the SSL certificates in date?

3. Are the SSL certificates signed by trusted CA providers or self signed?

4. Does the SSL use high enough cipher strengths?

5. Does your mobile app accept user-accepted certificates as authorities?

By the above questions, mobile app developers should be guided to consider the

implementation of SSL/TLS connection. Firstly, encrypted connection is necessary. Then, a

valid SSL connection is established. Strong cipher suites are also required. Finally, an

advanced MITM resistant protection, such as Certificate Pinning8, can be applied to enhance

the security of end-to-end connection.

8
 Certificate Pinning, Wikipedia https://en.wikipedia.org/wiki/HTTP_Public_Key_Pinning

Page 7

Best Practices

To prevent from the MITM attack and to build a secure connection, a correct SSL

implementation is necessary. About the network security on mobile, OWASP had issued

guidelines9 to prevent insufficient transport layer protection. This document will highlight the best

practices on the SSL implementation for mobile developers.

General Best Practices

● Assumption

○ Assume that the network layer is not secure and is susceptible to eavesdropping.

● Dos

○ Apply SSL/TLS to transport channels that the mobile app will use to transmit

sensitive information, session tokens, or other sensitive data to a backend API or

web service.

○ Use strong, industry standard cipher suites with appropriate key lengths, like

SHA256.

○ Use certificates signed by a well-known and trusted CA provider.

○ Always require SSL chain verification. Only establish a secure connection after

verifying the identity of the endpoint server using trusted certificates in the key

chain.

○ Alert users through the UI if the mobile app detects an invalid certificate.

○ Account for outside entities like third-party analytics companies, social networks,

etc. by using their SSL versions when an application runs a routine via the

browser/webkit. Avoid mixed SSL sessions as they may expose the user’s

session ID.

○ If possible, apply a separate layer of encryption to any sensitive data before it is

given to the SSL channel. In the event that future vulnerabilities are discovered in

the SSL implementation, the encrypted data will provide a secondary defense

against confidentiality violation.

○ Regular review of security risk and protection level on the mobile app and its

platform.

● Don’ts

○ Never allow self-signed certificates, and consider certificate pinning for security

conscious applications.

○ Do not send sensitive data over alternate insecure channels (e.g, SMS, MMS, or

notifications).

9
 Insufficient Transport Layer Protection, OWASP

https://www.owasp.org/index.php/Mobile_Top_10_2014-M3

Page 8

iOS Specific Best Practices

● Do not add code to bypass these defaults to accommodate development hurdles

● Ensure that certificates are valid and fail closed.

● When using CFNetwork, consider using the Secure Transport API to designate trusted

client certificates. To make secure connections, NSStream is used instead of using

sockets directly. In almost all situations,

NSStreamSocketSecurityLevelNegotiatedSSL should be used. If you need to

work around compatibility bugs, you can also specify a more specific protocol, such as

NSStreamSocketSecurityLevelTLSv1.

● After development, ensure all NSURL calls (or wrappers of NSURL) do not allow self

signed or invalid certificates such as the NSURL class method

setAllowsAnyHTTPSCertificate.

● Consider using certificate pinning by doing the following: export your certificate, include it

in your app bundle, and anchor it to your trust object. Using the NSURL method

connection:willSendRequestForAuthenticationChallenge: will now accept

your cert.

Android Specific Best Practices

● Remove all code after the development cycle that may allow the application to accept all

certificates such as org.apache.http.conn.ssl.AllowAllHostnameVerifier

or SSLSocketFactory.ALLOW_ALL_HOSTNAME_VERIFIER. These are equivalent to

trusting all certificates.

● If using a class which extends SSLSocketFactory, make sure

checkServerTrusted method is properly implemented so that server certificate is

correctly checked.

Recommendations on Practical Programming

In general, mobile app developer can implement a secure channel SSL using standard library

provided by official Software Development Kit (SDK). Sometimes, mobile developer would

bypass the validation error during testing; or mobile developer mishandle the validation of

certificate in the program.

The following scenarios10 are commonly found when a developer works on the SSL connection

in Android and iOS application.

10 手機應用程式開發上被忽略的 SSL 處理, DevCore http://devco.re/blog/2014/08/15/ssl-mishandling-on-

mobile-app-development/

Page 9

Android Scenario 1: Mishandle SSL error in onReceivedSslError function

If there is a SSL error when WebView connects to a HTTPS server, the function

onReceivedSslError will be triggered. Developer can decide the establishment of the

connection by using handler.proceed() or handler.cancel(). The function

handler.proceed() will be only used to bypass the error and process the connection in

testing environment. handler.cancel() should be used to deny the connection if SSL error

occurs.

Fig 2. Mishandling in onReceiveSslError function

Android Scenario 2: Mishandle validation in a custom TrustManager

With a custom TrustManager, developer may not implement the function of

checkServerTrusted, then the checking of server's certificate will be bypassed. An invalid

SSL connection could be established. Google provided an example code11 to takes a specific

CA to create a KeyStore, which is then used to create and initialize a TrustManager. In

addition, OWASP provided the sample program using custom TrustManager to implement

certificate pinning12.

11

 Security with HTTPS and SSL, Android Developer

https://developer.android.com/training/articles/security-ssl.html#UnknownCa
12

 Certificate Pinning for Android, OWASP

https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning#Android

Page 10

Fig 3. Missing implementation in checkServerTrusted function

Fig 4. Example code using KeyStore to create a TrustManager

Page 11

Android Scenario 3: Allow any hostname in the verification

Developer may ignore the hostname verification in the SSL session by setting

ALLOW_ALL_HOSTNAME_VERIFIER or return true in the function. This allows an invalid

SSL connection established when the hostname is different from the certificate. It is not a good

practice. A recommended practice is apply DefaultHostnameVerifier or apply

StrictHostnameVerifier in the hostname verification.

OR

Fig 5. Mishandling verification to allow all hostname

iOS Scenario 1: Allow any HTTPS certificate

The function allowsAnyHTTPSCertificateForHost is not allowed and not passed in the

App Store review. To prevent mis-deploy in the development environment, the program is better

to be placed in the block of “#if DEBUG” and ”#endif”. So that, the function is only executed

in debug mode.

Fig 6. Better to be placed in the block of “#if DEBUG” and ”#endif”

Page 12

iOS Scenario 2: Mishandle validation in NSURLConnection and NSURLSession

Developer may not implement the checking of certificate in the function NSURLConnection

and NSURLSession, that allows any invalid connection established in the application. This is

not a good practice on SSL implementation. OWASP provided the sample program when

implement certificate pinning13, which shows the verification of certificate in the iOS

development.

Fig 7. No validation of SSL certificate in NSURLConnection

Fig 8. No validation of SSL certificate in NSURLSession

13

 Certificate Pinning on iOS, OWASP

https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning#iOS

Page 13

Certificate Pinning

Attackers might find ways to circumvent digital certificate validation by implanting a fake digital

certificate into the certificate store of the mobile phone through mobile malware or social

engineering techniques.

To prevent such advanced MITM attack, Certificate Pinning is good solutions to ensure the

connection secure with a specific certificate. However, certificate pinning cannot be

implemented in WebView connection yet. To ensure the connection is secure, developers

should not rashly copy the sample code on the Internet and bypass the important validation

functions. Strict HTTPS implementation code should be followed. Apple iOS14 and Google

Android15 provides network security suggestion for the mobile apps developers. Besides,

OWASP issued Top 10 mobile risks, which included network security recommendation.

Developers and companies have responsibility to protect the transferring data and provide a

secure environment against MITM attack to mobile users.

Conclusion

SSL encryption is a key technological safeguard to protect sensitive data from unauthorized

interception or access in transmission. In mobile apps, since there is no visual cue as browsers

to warn the users on invalid SSL connection, the responsibility of mobile developer in the proper

implementation of SSL should be highlighted.

This document has described the best practices with recommendations in practical

programming in Android and iOS platforms. We hope that this is useful for mobile developers to

develop good and secure code for the benefits of the community.

14

 Using Networking Securely, iOS Developer Library
https://developer.apple.com/library/ios/documentation/NetworkingInternetWeb/Conceptual/NetworkingOv
erview/SecureNetworking/SecureNetworking.html
15

 Security with HTTPS and SSL, Android Developer
https://developer.android.com/training/articles/security-ssl.html

