

Hong Kong Security Watch Report

Q3 2016

Foreword

Better Security Decision with Situational Awareness

Nowadays, a lot of "invisible" compromised computers are controlled by attackers with the owner being unaware. The data on these computers may be mined and exposed every day, and the computers may be utilized in different kinds of abuse and criminal activities.

The Hong Kong Security Watch Report aims to provide the public a better "visibility" of the situation of the compromised computers in Hong Kong so that they can make better decision in protecting their information security.

The data in this report is about the activities of compromised computers in Hong Kong which suffer from, or participate in various forms of cyber attacks, including web defacement, phishing, malware hosting, botnet command and control centres (C&C) or bots. Computers in Hong Kong are defined as those whose network geolocation is Hong Kong, or the top level domain of their host name is ".hk" or ".香港".

Capitalizing on the Power of Global Intelligence

This report is the fruit of the collaboration of HKCERT and global security researchers. Many security researchers have the capability to detect attacks targeting their own or their customers' networks. Some of them provide the information of IP addresses of attack source or web links of malicious activities to other information security organizations with an aim to collaboratively improve the overall security of the cyberspace. They have good practice in sanitizing personal identifiable data before sharing information.

HKCERT collects and aggregates such valuable data about Hong Kong from multiple information sources for analysis with Information Feed Analysis System (IFAS), a system developed by HKCERT. The information sources (Appendix 1) are very distributed and reliable, providing a balanced reflection of the security status of Hong Kong.

We remove duplicated events reported by multiple sources and use the following metrics for measurement to assure the quality of statistics.

Type of Attack	Metric used
Defacement, Phishing,	Number of security events on unique URLs within the reporting
Malware Hosting	period
Botnet command and	Number of security events on unique IP addresses within the
control centres (C&C)	reporting period

Bots	Sum of the number of individual bots as recorded with the
	reporting period.
	The number of individual bots is the maximum of the daily number
	of security events on unique IP addresses.

Better information better service

We will continue to enhancing this report with more valuable information sources and more in-depth analysis. We will also explore how to use the data to enhance our services. *Please send us your feedback via email (hkcert@hkcert.org)*.

Limitations

The data collected in this report is from multiple different sources with different collection method, collection period, presentation format and their own limitations. The numbers from the report should be used as a reference, and should neither be compared directly nor be regarded as a full picture of the reality.

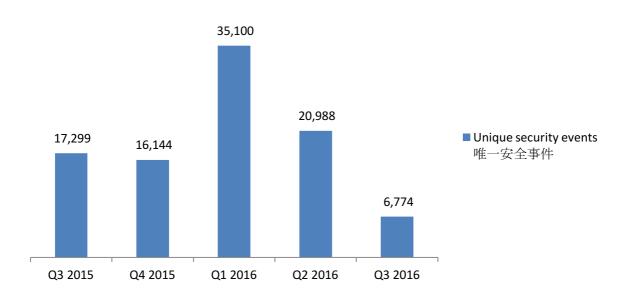
Disclaimer

Data may be subject to update and correction without notice. We shall not have any liability, duty or obligation for or relating to the content and data contained herein, any errors, inaccuracies, omissions or delays in the content and data, or for any actions taken in reliance thereon. In no event shall we be liable for any special, incidental or consequential damages, arising out of the use of the content and data.

License

The content of this report is provided under Creative Commons Attribution 4.0 International License. You may share and adopt the content for any purpose, provided that you attribute the work to HKCERT.

http://creativecommons.org/licenses/by/4.0/


Table of Content

High	light	of R	eport	4	
Repo	ort D	etail	5	9	
	1.		Defacement	9	
		1.1	Summary	9	
	2.		Phishing		
		2.1	Summary		
	3.		Malware Hosting		
		3.1	Summary		
	4.		Botnet		
		4.1	Botnets – Command & Control Servers		
		4.2	Botnets – Bots		
Арре	endio	ces			
	Арр	endi	x 1 – Sources of information		
	Appendix 2 – Geolocation identification methods18				
	Appendix 3 – Major Botnet Families19				

Highlight of Report

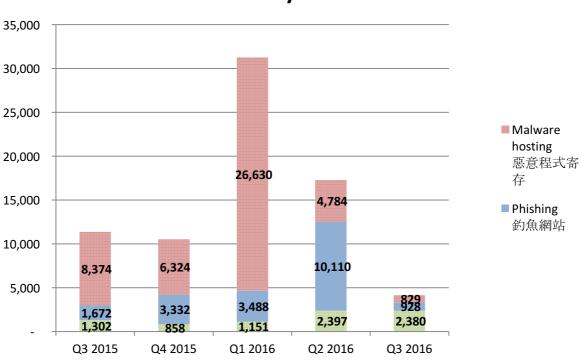
This report is for Quarter 3 of 2016.

In 2016 Q3, there were 6,774 unique security events related to Hong Kong used for analysis in this report. The information was collected with IFAS¹ from 19 sources of information.² They are not from the incident reports received by HKCERT.

Trend of security events

Figure 1-Trend of security events

The total number of security events in Q3 2016 decreased significantly by 68% or 14,214 events. The sharp decrease was due to two reasons. First, the data from CleanMX, which is one of our major sources of phishing events and malware hosting events, was temporarily unavailable in this quarter, leading to a huge drop in server related security events. Second, in the same period, the number of botnet (bots) events dropped significantly by 29%. As a result, the number of security events reached an all-time low of 6,774.


Server related security events

Server related security events include malware hosting, phishing and defacement. Their

¹ IFAS Information Feed Analysis System is a HKCERT developed system that collects global security intelligence relating to Hong Kong for analysis.

² Refer to Appendix 1 for the Sources of Information

trends and distributions are summarized below:

Trend and Distribution of server related security events

Figure 2 – Trend and distribution of server related security events

The number of server related security events decreased from 17,291 to 4,137 (decreased by 76%) in Q3 2016.

As mentioned in the previous section, the drop in number was due to the unavailability of one of our major data sources. It could not be interpreted as an improvement in server related security events. The number server events contributed from CleanMX data feed in Q2 2016 was13,801 (80% of total server events).

In this quarter, the most popular TLD for phishing event was ".cc". It is the first time a TLD other than ".com" was ranked number one. Most of the events were from a free domain registrar ".usa.cc".

".cc" is the country code top-level domain (ccTLD) of for Cocos (Keeling) Islands, an Australian territory. However, it was being abused for malicious purpose. According to Anti-Phishing Working Group (APWG) Phishing Attack Trends Reports Q2 2014³, 1% of all malicious domains were from ".cc".

The situation of one of its second level domain, ".co.cc" was even more serious. The ".co.cc"

³ http://docs.apwg.org/reports/apwg trends report q2 2014.pdf

subdomain is managed by the CO.CC company, which provided free and discounted domains. Since a high proportion of websites using ".co.cc" were malicious, all ".co.cc" websites were blocked by Google since 2011⁴. The domain then suddenly shut down at 2012⁵. Now all .co.cc domains were redirected to .cc.cc domains.

HKCERT urges system and application administrators to protect the servers.

- patch server up-to-date to avoid the known vulnerabilities being exploited.
- update web application and plugins to the latest version
- follow best practice on user account and password management
- implement validation check for user input and system output
- provide strong authentication, e.g. two factor authentication, at administrative control interface
- acquire information security knowledge to prevent social engineering

Botnet related security events

Botnet related security events can be classified into two categories:

- Botnet Command and Control Centres (C&C) security events involving small number of powerful computers, mostly servers, which give commands to bots
- Bots security events involving large number of computers, mostly home computers, which receive commands from C&C.

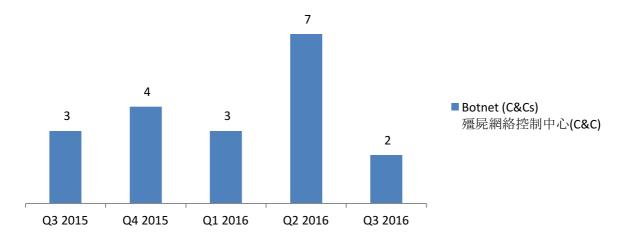
Botnet Command and Control Servers

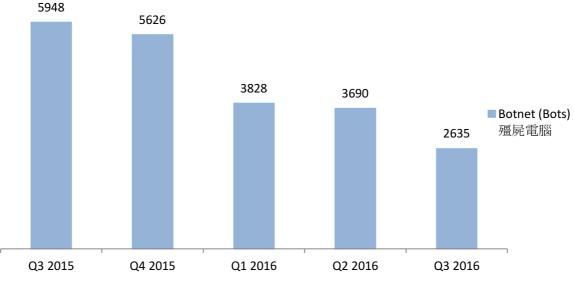
The trend of botnet C&C security events is summarized below:

⁴ http://www.theregister.co.uk/2011/07/06/google cans 11m dot co dot cc sites/

⁵ http://snat.co.uk/others/farewell-co-cc.html

Trend of Botnet (C&Cs) security events




Figure 3 – Trend of Botnet (C&Cs) related Security Events

The number of botnet Command and Control Servers decreased this quarter.

There were 2 C&C servers reported in this quarter. Both were identified as IRC bot C&C servers

Botnet Bots

The trend of botnet (bots) security events is summarized below:

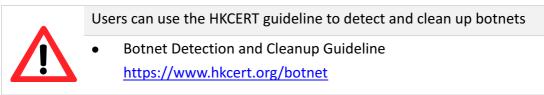
Trend of Botnet (Bots) security events

Figure 4 - Trend of Botnet (Bots) Security Events

Number of Botnet (bots) on Hong Kong network decreased this quarter. The number of events of Bedep, which was the third botnet last quarter, dropped the most by 86% or 290 events. Four other botnets recorded a decrease of 11-28% too. (Figure 12) However, the botnet Nivdort botnet appeared in the chart for the first time.

Nivdort is a Trojan that steals sensitive information silently in the target systems. Nivdort spreads through spam emails. In early 2016, researchers discovered a spamming campaign sending malicious zip files pretending to be a vouchers or Whatsapp message.⁶ If the malicious file is opened, it will try to infect the system with Nivdort.

Once infected, Nivdort can disable the firewall notifications from the Windows Security Center. It will collect sensitive information of the victims including login credentials and credit card information.

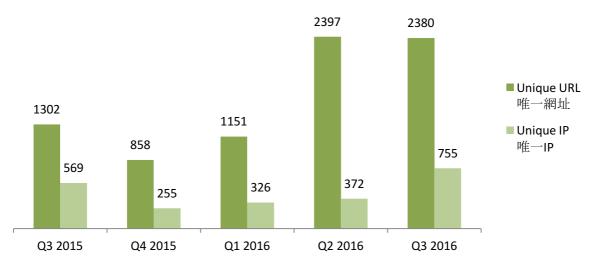


- patch their computers
- install a working copy of security software and scan for malware on their machines
- set strong passwords to avoid credential based attack
- do not use Windows, media files and software that have no proper licenses
- do not use Windows and software that have no security updates
- do not open files from unreliable sources

HKCERT has been following up the security events received and proactively engaged local ISPs for the botnet clean up since June 2013. Currently, botnet cleanup operations against major botnet family - Pushdo, Citadel, ZeroAccess, GameOver Zeus and Ramnit are still in action.

HKCERT urges general users to join the cleanup acts. Ensure your computers are not being infected and controlled by malicious software.

Protect yourself and keep the cyberspace clean.



⁶ https://blogs.mcafee.com/mcafee-labs/nivdort-data-stealing-trojan-arrives-via-spam/

Report Details

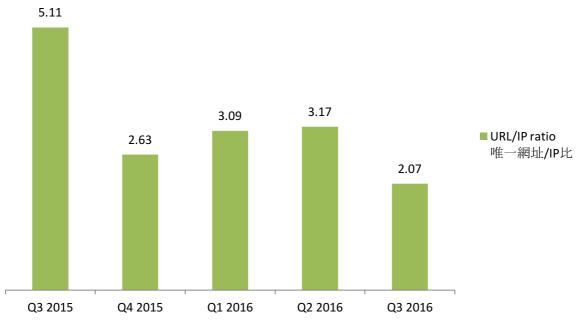
1. Defacement

1.1 <u>Summary</u>

Trend of Defacement security events

 What is defacement?

 • Defacement is the unauthorized alteration of the content of a legitimate website using hacking method.


 What are the potential impacts?

 • The integrity of the website content is damaged.

 • Original content might be inaccessible

 • Reputation of the website owner might be damaged

 • Other information stored / processed on the server might be further compromised by the hacker to perform other attacks.

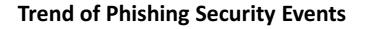
URL/IP ratio of Defacement security events

Figure 6 - URL/IP Ratio of Defacement Security Events

What is URL/IP ratio?

• It is the number of security events count in unique URL divided by the number of security events count in unique IP addresses

What can this ratio indicate?


- Number of events counted in unique URL cannot reflect the number of compromised servers, since one server may contain many URL
- Number of events counted in unique IP address can better related to the number of compromised servers
- The higher the ratio is, the more mass compromise happened

Sources of Information:

• Zone - H

2. Phishing

2.1 Summary

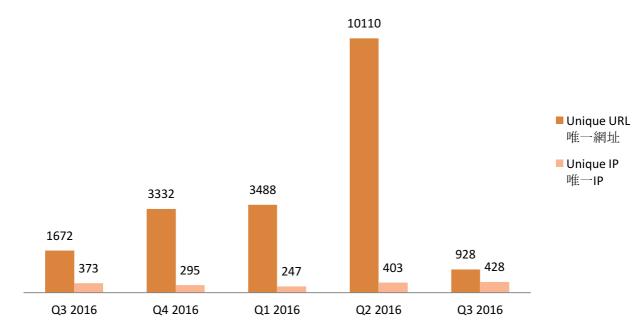
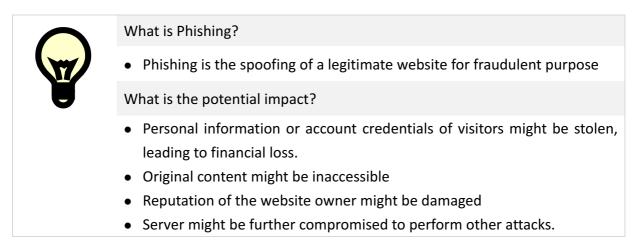



Figure 7 – Trend of Phishing Security Events

Note:

As mentioned in page 4, the drop in number in Q3 2016 was due to the unavailability of CleanMX data that is a major source of phishing and malware hosting event. It could not be interpreted as an improvement in phishing events.

釣魚網站安全事件唯一網址/IP比

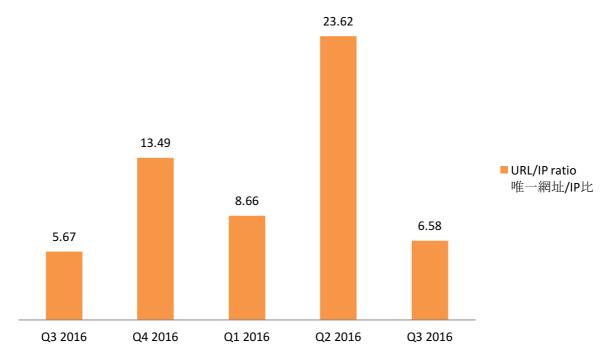


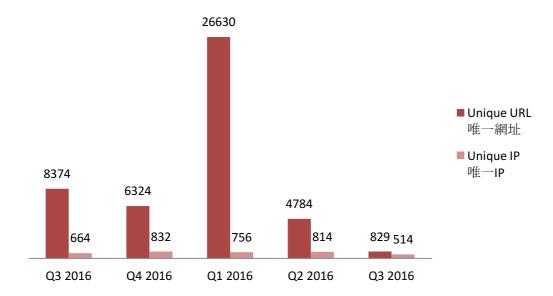
Figure 8 - URL/IP Ratio of Phishing Security Events

 What is URL/IP ratio?

 • It is the number of security events count in unique URL divided by the number of security events count in unique IP addresses

 What can this ratio indicate?

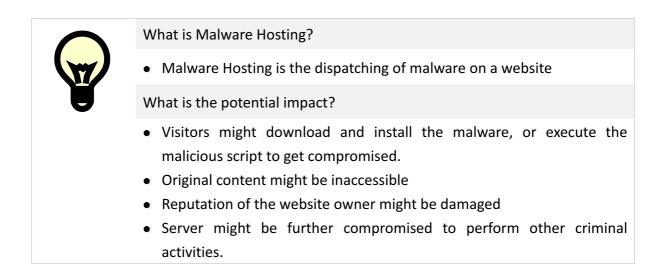
 • Number of events counted in unique URL cannot reflect the number of compromised servers, since one server may contain many URL


 • Number of events counted in unique IP address can better related to the number of compromised servers

 • The higher the ratio is, the more mass compromise happened

- ArborNetwork Atlas SRF
- CleanMX phishing
- Millersmiles
- Phishtank

3. Malware Hosting


3.1 Summary

Trend of Malware Hosting Security Events

Figure 9 – Trend of Malware Hosting Security Events

As mentioned in page 4, the drop in number in Q3 2016 was due to the unavailability of CleanMX data that is a major source of phishing and malware hosting event. It could not be interpreted as an improvement in malware hosting events.

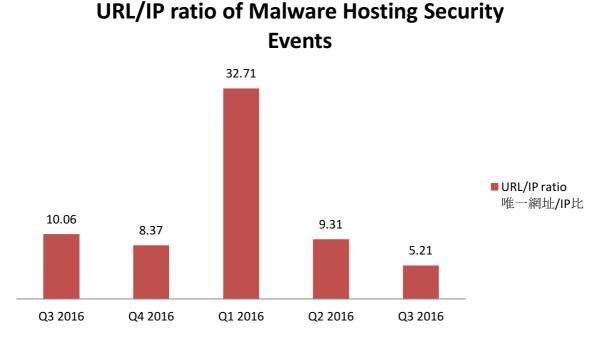
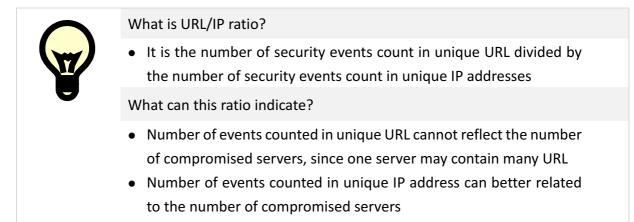
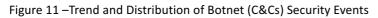



Figure 10 - URL/IP Ratio of Malware Hosting Security Events



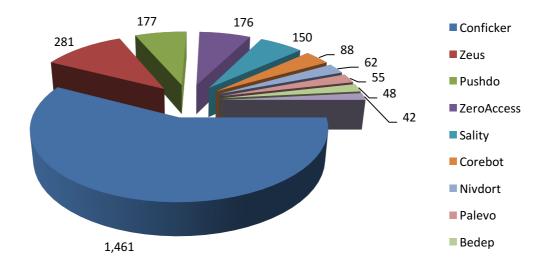
• The higher the ratio is, the more mass compromise happened


- Abuse.ch: Zeus Tracker Binary URL
- Abuse.ch: SpyEye Tracker Binary URL
- CleanMX Malware
- Malc0de
- MalwareDomainList
- Sacour.cn

4. Botnet

4.1 Botnets – Command & Control Servers

Trend and Distribution of Botnet (C&Cs) security events

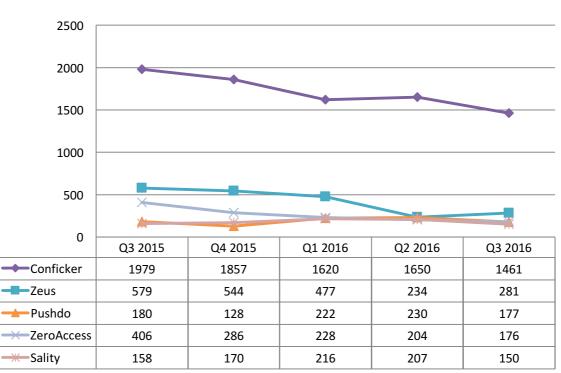

What is a Botnet Command & Control Centre?• A Botnet Command & Control Centre is a server used by cybercriminals to
control the bots, which are compromised computers, by sending them
commands to perform malicious activities, e.g. stealing personal and
financial information or launching DDoS attacks.What is the potential impact?• Server might be heavily loaded when many bots connect to it.• Server might contain large amount of personal and financial data stolen
by other bots.

- Zeus Tracker
- SpyEye Tracker
- Palevo Tracker
- Shadowserver C&Cs

4.2 Botnets – Bots

4.2.1 Major Botnet Families⁷ found on Hong Kong Networks

Individual botnet's size is calculated from the maximum of the daily counts of unique IP addresses attempting to connect to the botnet in the report period. In other words, the real botnet size should be larger because not all bots are powered on within the same day.



Major Botnet Families in Hong Kong Network

Rank	$\wedge \Psi$	Concerned Bots	Number of Unique IP addresses (Max count in a Quarter)	Changes with previous period
1	-	Conficker	1,461	-11%
2	\uparrow	Zeus	281	20%
3	\uparrow	Pushdo	177	-23%
4	\uparrow	ZeroAccess	176	-14%
5	\uparrow	Sality	150	-28%
6	\uparrow	Corebot	88	110%
7	NEW	Nivdort	62	NA
8	-	Palevo	55	12%
9	\checkmark	Bedep	48	-86%
10	\uparrow	Ramnit	42	40%

Figure 12 – Major Botnet Families in Hong Kong Networks

⁷ Major Botnet Families are selected botnet families with considerable amount of security events reported from the information sources constantly across the reporting period.

Trend of Top 5 Botnet Families in Hong Kong Network

Figure 13 – Trend of Top 5 Botnet Families in Hong Kong Network

What is a Botnet - Bot?

• A bot is usually a personal computer that is infected by malicious software to become part of a botnet. Once infected, the malicious software usually hide itself, and stealthy connect to the Command & Control Server, to get the instruction from hackers.

What is the potential impact?

- Computer owner's personal and financial data might be stolen which may lead to financial loss.
- Computer might be commanded by attacker to perform other criminal activities.

- ArborNetwork Atlas SRF Conficker
- ShadowServer botnet_drone
- ShadowServer sinkhole_http_drone
- ShadowServer Microsoft_sinkhole

Appendices

Appendix 1 – Sources of information

The following information feeds sources

Event Type	Source	First introduced
Defacement	Zone - H	2013-04
Phishing	ArborNetwork: Atlas SRFPhishing	2013-04
Phishing	CleanMX – Phishing	2013-04
Phishing	Millersmiles	2013-04
Phishing	Phishtank	2013-04
Malware Hosting	Abuse.ch: Zeus Tracker – Binary URL	2013-04
Malware Hosting	Abuse.ch: SpyEye Tracker – Binary URL	2013-04
Malware Hosting	CleanMX – Malware	2013-04
Malware Hosting	Malc0de	2013-04
Malware Hosting	Malware Domain List	2013-04
Malware Hosting	Sacour.cn	2013-04
Botnet (C&Cs)	Abuse.ch: Zeus Tracker – C&Cs	2013-04
Botnet (C&Cs)	Abuse.ch: SpyEye Tracker – C&Cs	2013-04
Botnet (C&Cs)	Abuse.ch: Palevo Tracker – C&Cs	2013-04
Botnet (C&Cs)	Shadowserver C&Cs	2013-09
Botnet(Bots)	Arbor Network: Atlas SRF–Conficker	2013-08
Botnet(Bots)	Shadowserver botnet_drone	2013-08
Botnet(Bots)	Shadowserver sinkhole_http_drone	2013-08
Botnet(Bots)	Shadowserver microsoft_sinkhole	2013-08

Appendix 2 – Geolocation identification methods

We use the following methods to identify if a network's geolocation is in Hong Kong.

Method	Last update
Maxmind	2016-10-4

Appendix 3 – Major Botnet Families

Major Botnets	Alias	Nature	Infection Method	Attacks / Impacts
Bamital	Nil	Trojan	 drive-by download via exploit kit via P2P network 	 Click fraud Search hijacking
BankPatch	 MultiBanker Patcher BankPatcher 	Banking Trojan	 via adult web sites corrupt multimedia codecs spam e-mail chat and messaging systems 	 monitor specific banking websites steal banking credentials and sensitive information
Bedep	Nil	Trojan	 via exploit kit malvertising 	 click fraud download other malwares
BlackEnergy	Nil	DDoS Trojan	 rootkit techniques to maintain persistence uses process injection technique strong encryption and modular architecture 	 launch DDoS attacks
Citadel	Nil	Banking Trojan	 avoid and disable security tool detection 	 steal banking credentials and sensitive information keystroke logging screenshot capture video capture man-in-the-browser attack ransomware

Conficker	• Downadup • Kido	Worm	 domain generation algorithm (DGA) capability communicate via P2P network disable security software spread via removable drives using "autorun" feature 	 exploit the Windows Server Service vulnerability (MS08- 067) brute force attacks for admin credential to spread across network
Corebot	Nil	Banking Trojan	 via droppers 	 steal sensitive information install other malwares backdoor capabilities that allow unauthorized access
Dyre	Nil	Banking Trojan	• spam e-mail	 steal banking credential by tricking the victim to call an illegitimate number send spams
Gamarue	 Andromeda 	Downloader/ Worm	 via exploit kit spam e-mail MS Word macro removable-drives 	 steal sensitive information allow unauthorized access install other malware
Glupteba	Nil	Trojan	 drive-by download via Blackhole Exploit Kit 	 push contextual advertising and clickjacking to victims
IRC Botnet	Nil	Trojan	 communicate via IRC network 	 backdoor capabilities that allow unauthorized access launch DDoS attack send spams
Nivdort	Nil	Trojan	• spam e-mail	 steal login credentials and sensitive information

Nymaim	Nil	Trojan	spam e-mailmalicious link	 lock Infected systems stop victims from accessing files ask for ransom
Palevo	 Rimecud Butterfly bot Pilleuz Mariposa Vaklik 	Worm	 spread via instant messaging, P2P network and removable drives 	 backdoor capabilities that allow unauthorized access steal login credentials and sensitive information steal money directly from banks using money mules
Pushdo	• Cutwail Pandex	Downloader	 hiding its malicious network traffic domain generation algorithm (DGA) capability distribute via drive by download exploit browser and plugins' vulnerabilities 	 download other banking malware (e.g. Zeus and SpyEye) launch DDoS attacks send spams
Ramnit	Nil	Worm	 file infection via exploit kits public FTP servers 	 backdoor capabilities that allow unauthorized access steal login credentials and sensitive information
Sality	Nil	Trojan	 rootkit techniques to maintain persistence communicate via P2P network spread via removable drives and shares 	 send spams proxying of communications steal sensitive information

			 disable security software use polymorphic and entry point obscuring (EPO) techniques to infect files 	 compromise web servers and/or coordinating distributed computing tasks for the purpose of processing intensive tasks (e.g. password cracking) install other malware
Slenfbot	• Nil	Worm	 spread via removable drives and shares 	 backdoor capabilities that allow unauthorized access download financial malware sending spam launch DDoS attacks
Tinba	• TinyBanker • Zusy	Banking Trojan	 via exploit kit spam e-mail 	 steal banking credential and sensitive information
Torpig	• Sinowal Anserin	Trojan	 rootkit techniques to maintain persistence (Mebroot rootkit) domain generation algorithm (DGA) capability distribute via drive by download 	 steal sensitive information man in the browser attack
Virut	Nil	Trojan	 spread via removable drives and shares 	 send spams launch DDoS attacks fraud data theft

Wapomi	• Nil	Worm	 spread via removable drives and shares infects executable files 	 backdoor capabilities download and drop additional destructive payloads alter important files causing unreliable system performance gather computer activity, transmit private data and cause sluggish computer
ZeroAccess	• max++ • Sirefef	Trojan	 rootkit techniques to maintain persistence communicate via P2P network distribute via drive by download distribute via disguise as legitimate file (eg. media files, keygen) 	 download other malware bitcoin mining and click fraud
Zeus	• Gameover	Banking Trojan	 stealthy techniques to maintain persistence distribute via drive by download communicate via P2P network 	 steal banking credential and sensitive information man in the browser attack keystroke logging download other malware (e.g. Cryptolocker) launch DDoS attacks